资源类型

期刊论文 113

会议视频 5

会议信息 1

年份

2024 1

2023 16

2022 13

2021 11

2020 9

2019 6

2018 8

2017 10

2016 5

2015 4

2014 3

2013 1

2012 4

2011 4

2010 6

2009 4

2008 2

2007 5

2006 3

2003 1

展开 ︾

关键词

无线传感器网络 3

人工智能 2

10kV高压电力电缆 1

3D 打印 1

RGB-D 1

上下文感知;协作学习;社会计算;虚拟组织;无线传感器网络;实时定位系统 1

下一代测序 1

交通运输物联网 1

人造细菌鞭毛(ABFs) 1

仿生机器人 1

传感器融合 1

传感器调度;区域检测;目标跟踪;道路约束;多普勒盲区 1

传感引导;下肢外骨骼;人体传感网络;步态同步;体重支撑 1

传感网 1

信息技术 1

倾角传感器 1

健康监测系统 1

光流;仿视网膜图像传感器;脉冲触发;高速目标;视觉处理 1

全局边界搜索 1

展开 ︾

检索范围:

排序: 展示方式:

Biomedical sensor technologies on the platform of mobile phones

Lin LIU, Jing LIU

《机械工程前沿(英文)》 2011年 第6卷 第2期   页码 160-175 doi: 10.1007/s11465-011-0216-0

摘要:

Biomedical sensors have been widely used in various areas of biomedical practices, which play an important role in disease detection, diagnosis, monitoring, treatment, health management, and so on. However, most of them and their related platforms are generally not easily accessible or just too expensive or complicated to be kept at home. As an alternative, new technologies enabled from the mobile phones are gradually changing such situations. As can be freely available to almost everyone, mobile phone offers a unique way to improve the conventional medical care through combining with various biomedical sensors. Moreover, the established systems will be both convenient and low cost. In this paper, we present an overview on the state-of-art biomedical sensors, giving a brief introduction of the fundamental principles and showing several new examples or concepts in the area. The focus was particularly put on interpreting the technical strategies to innovate the biomedical sensor technologies based on the platform of mobile phones. Some challenging issues, including feasibility, usability, security, and effectiveness, were discussed. With the help of electrical and mechanical technologies, it is expected that a full combination between the biomedical sensors and mobile phones will bring a bright future for the coming pervasive medical care.

关键词: biomedical sensor     pervasive technology     mobile phone     combined system     health management    

A bionic approach for the mechanical and electrical decoupling of an MEMS capacitive sensor in ultralow

《机械工程前沿(英文)》 2023年 第18卷 第2期 doi: 10.1007/s11465-023-0747-1

摘要: Capacitive sensors are efficient tools for biophysical force measurement, which is essential for the exploration of cellular behavior. However, attention has been rarely given on the influences of external mechanical and internal electrical interferences on capacitive sensors. In this work, a bionic swallow structure design norm was developed for mechanical decoupling, and the influences of structural parameters on mechanical behavior were fully analyzed and optimized. A bionic feather comb distribution strategy and a portable readout circuit were proposed for eliminating electrostatic interferences. Electrostatic instability was evaluated, and electrostatic decoupling performance was verified on the basis of a novel measurement method utilizing four complementary comb arrays and application-specific integrated circuit readouts. An electrostatic pulling experiment showed that the bionic swallow structure hardly moved by 0.770 nm, and the measurement error was less than 0.009% for the area-variant sensor and 1.118% for the gap-variant sensor, which can be easily compensated in readouts. The proposed sensor also exhibited high resistance against electrostatic rotation, and the resulting measurement error dropped below 0.751%. The rotation interferences were less than 0.330 nm and (1.829 × 10−7)°, which were 35 times smaller than those of the traditional differential one. Based on the proposed bionic decoupling method, the fabricated sensor exhibited overwhelming capacitive sensitivity values of 7.078 and 1.473 pF/µm for gap-variant and area-variant devices, respectively, which were the highest among the current devices. High immunity to mechanical disturbances was maintained simultaneously, i.e., less than 0.369% and 0.058% of the sensor outputs for the gap-variant and area-variant devices, respectively, indicating its great performance improvements over existing devices and feasibility in ultralow biomedical force measurement.

关键词: micro-electro-mechanical system capacitive sensor     bionics     operation instability     mechanical and electrical decoupling     biomedical force measurement    

Personalized biomedical devices & systems for healthcare applications

I-Ming CHEN, Soo Jay PHEE, Zhiqiang LUO, Chee Kian LIM

《机械工程前沿(英文)》 2011年 第6卷 第1期   页码 3-12 doi: 10.1007/s11465-011-0209-z

摘要:

With the advancement in micro- and nanotechnology, electromechanical components and systems are getting smaller and smaller and gradually can be applied to the human as portable, mobile and even wearable devices. Healthcare industry have started to benefit from this technology trend by providing more and more miniature biomedical devices for personalized medical treatments in order to obtain better and more accurate outcome. This article introduces some recent development in non-intrusive and intrusive biomedical devices resulted from the advancement of niche miniature sensors and actuators, namely, wearable biomedical sensors, wearable haptic devices, and ingestible medical capsules. The development of these devices requires carful integration of knowledge and people from many different disciplines like medicine, electronics, mechanics, and design. Furthermore, designing affordable devices and systems to benefit all mankind is a great challenge ahead. The multi-disciplinary nature of the R&D effort in this area provides a new perspective for the future mechanical engineers.

关键词: personalized medical devices     wearable sensor     haptic device     ingestible medical capsule    

Systems biomedical analysis of Schistosoma japonicum

Ze-Guang HAN MD,

《医学前沿(英文)》 2010年 第4卷 第2期   页码 157-165 doi: 10.1007/s11684-010-0034-5

摘要: Human schistosomiasis, caused mainly by three principal species including , , and , remains a major public health concern worldwide. is prevalent in southern China, being a major disease risk for 66 million people. The blood fluke has a complex life cycle for survival: as a free-living form in fresh water and as a parasite in the snail intermediate and vertebrate definitive hosts. Systems-based biomedical analyses, including genomic, transcriptomic, proteomic and metabonomic approaches, have been performed on the schistosome. These comprehensive investigations have not only characterized the genomic features but also chartered gene and protein expression profiles across genders and developmental stages. The integration of the huge information will lay a global and solid foundation for the molecular architecture of the biology, pathogenesis, and host-parasite interactions of the human blood fluke, which will facilitate the development of a new antischistosomal vaccine and drugs as well as diagnostic markers for the treatment and control of schistosomiasis.

关键词: Schistosoma japonicum     systems biomedical analysis    

Fluorescent probes and functional materials for biomedical applications

《化学科学与工程前沿(英文)》 2022年 第16卷 第10期   页码 1425-1437 doi: 10.1007/s11705-022-2163-1

摘要: Due to their simplicity in preparation, sensitivity and selectivity, fluorescent probes have become the analytical tool of choice in a wide range of research and industrial fields, facilitating the rapid detection of chemical substances of interest as well as the study of important physiological and pathological processes at the cellular level. In addition, many long-wavelength fluorescent probes developed have also proven applicable for in vivo biomedical applications including fluorescence-guided disease diagnosis and theranostics (e.g., fluorogenic prodrugs). Impressive progresses have been made in the development of sensing agents and materials for the detection of ions, organic small molecules, and biomacromolecules including enzymes, DNAs/RNAs, lipids, and carbohydrates that play crucial roles in biological and disease-relevant events. Here, we highlight examples of fluorescent probes and functional materials for biological applications selected from the special issues “Fluorescent Probes” and “Molecular Sensors and Logic Gates” recently published in this journal, offering insights into the future development of powerful fluorescence-based chemical tools for basic biological studies and clinical translation.

关键词: fluorescent probes     imaging     cell     biomedicine     biomolecules    

A mini review: Shape memory polymers for biomedical applications

Kaojin Wang, Satu Strandman, X. X. Zhu

《化学科学与工程前沿(英文)》 2017年 第11卷 第2期   页码 143-153 doi: 10.1007/s11705-017-1632-4

摘要: Shape memory polymers (SMPs) are smart materials that can change their shape in a pre-defined manner under a stimulus. The shape memory functionality has gained considerable interest for biomedical applications, which require materials that are biocompatible and sometimes biodegradable. There is a need for SMPs that are prepared from renewable sources to be used as substitutes for conventional SMPs. In this paper, advances in SMPs based on synthetic monomers and bio-compounds are discussed. Materials designed for biomedical applications are highlighted.

关键词: shape memory polymer     biodegradability     biocompatibility     biomedical application     bile acids    

Introduction to the Special Section on Biomedical Devices for Personal Health Applications

I-Ming CHEN

《机械工程前沿(英文)》 2011年 第6卷 第1期   页码 1-2 doi: 10.1007/s11465-011-0210-6

Functional ferritin nanoparticles for biomedical applications

Zhantong Wang, Haiyan Gao, Yang Zhang, Gang Liu, Gang Niu, Xiaoyuan Chen

《化学科学与工程前沿(英文)》 2017年 第11卷 第4期   页码 633-646 doi: 10.1007/s11705-017-1620-8

摘要: Ferritin, a major iron storage protein with a hollow interior cavity, has been reported recently to play many important roles in biomedical and bioengineering applications. Owing to the unique architecture and surface properties, ferritin nanoparticles offer favorable characteristics and can be either genetically or chemically modified to impart functionalities to their surfaces, and therapeutics or probes can be encapsulated in their interiors by controlled and reversible assembly/disassembly. There has been an outburst of interest regarding the employment of functional ferritin nanoparticles in nanomedicine. This review will highlight the recent advances in ferritin nanoparticles for drug delivery, bioassay, and molecular imaging with a particular focus on their biomedical applications.

关键词: nanomedicine     ferritin     drug delivery     bioassay     molecular imaging    

Development and testing of a wireless smart toolholder with multi-sensor fusion

《机械工程前沿(英文)》 2023年 第18卷 第4期 doi: 10.1007/s11465-023-0774-y

摘要: The smart toolholder is the core component in the development of intelligent and precise manufacturing. It enables in situ monitoring of cutting data and machining accuracy evolution and has become a focal point in academic research and industrial applications. However, current table and rotational dynamometers for milling force, vibration, and temperature testing suffer from cumbersome installation and provide only a single acquisition signal, which limits their use in laboratory settings. In this study, we propose a wireless smart toolholder with multi-sensor fusion for simultaneous sensing of milling force, vibration, and temperature signals. We select force, vibration, and temperature sensors suitable for smart toolholder fusion to adapt to the cutting environment. Thereafter, structural design, circular runout, dynamic balancing, static stiffness, and dynamic inherent frequency tests are conducted to assess its dynamic and static performance. Finally, the smart toolholder is tested for accuracy and repeatability in terms of force, vibration, and temperature. Experimental results demonstrate that the smart toolholder accurately captures machining data with a relative deviation of less than 1.5% compared with existing force gauges and provides high repeatability of milling temperature and vibration signals. Therefore, it is a smart solution for machining condition monitoring.

关键词: wireless smart toolholder     multi-sensor fusion     circular runout     dynamic balancing     static stiffness     dynamic inherent frequency    

Flexible micro flow sensor for micro aerial vehicles

Rong ZHU, Ruiyi QUE, Peng LIU

《机械工程前沿(英文)》 2017年 第12卷 第4期   页码 539-545 doi: 10.1007/s11465-017-0427-0

摘要:

This article summarizes our studies on micro flow sensors fabricated on a flexible polyimide circuit board by a low-cost hybrid process of thin-film deposition and circuit printing. The micro flow sensor has merits of flexibility, structural simplicity, easy integrability with circuits, and good sensing performance. The sensor, which adheres to an object surface, can detect the surface flow around the object. In our study, we install the fabricated micro flow sensors on micro aerial vehicles (MAVs) to detect the surface flow variation around the aircraft wing and deduce the aerodynamic parameters of the MAVs in flight. Wind tunnel experiments using the sensors integrated with the MAVs are also conducted.

关键词: micro flow sensor     flexible sensor     surface flow sensing     aerodynamic parameter     micro aerial vehicle (MAV)    

Fault diagnosis of axial piston pumps with multi-sensor data and convolutional neural network

《机械工程前沿(英文)》 2022年 第17卷 第3期 doi: 10.1007/s11465-022-0692-4

摘要: Axial piston pumps have wide applications in hydraulic systems for power transmission. Their condition monitoring and fault diagnosis are essential in ensuring the safety and reliability of the entire hydraulic system. Vibration and discharge pressure signals are two common signals used for the fault diagnosis of axial piston pumps because of their sensitivity to pump health conditions. However, most of the previous fault diagnosis methods only used vibration or pressure signal, and literatures related to multi-sensor data fusion for the pump fault diagnosis are limited. This paper presents an end-to-end multi-sensor data fusion method for the fault diagnosis of axial piston pumps. The vibration and pressure signals under different pump health conditions are fused into RGB images and then recognized by a convolutional neural network. Experiments were performed on an axial piston pump to confirm the effectiveness of the proposed method. Results show that the proposed multi-sensor data fusion method greatly improves the fault diagnosis of axial piston pumps in terms of accuracy and robustness and has better diagnostic performance than other existing diagnosis methods.

关键词: axial piston pump     fault diagnosis     convolutional neural network     multi-sensor data fusion    

基于自解耦三明治结构的横向运动栅场效应晶体管微机电系统微力传感器 Article

高文迪, 乔智霞, 韩香广, 王小章, Adnan Shakoor, 刘存朗, 卢德江, 杨萍, 赵立波, 王永录, 王久洪, 蒋庄德, 孙东

《工程(英文)》 2023年 第21卷 第2期   页码 61-74 doi: 10.1016/j.eng.2022.06.018

摘要:

本文介绍了一种基于横向运动栅极场效应晶体管(LMGFET)的新型微型力传感器。文中提出了一种用于小型LMGFET器件性能评估的电气模型,与以前的模型相比,其具有更高精度。由此设计了一种新型的三明治夹层结构,该结构由跨轴解耦Au-栅极阵列层和两个柔性光刻胶SU-8 层组成。通过所提出的双差分传感布置,LMGFET工作时受垂直干扰产生的输出电流被大大消除,所提出传感器的相对输出误差从4.53%(传统差分结构)降低到0.01%。本文还为所提出的传感器开发和模拟了一个可行的制造工艺过程。基于LMGFET的力传感器的灵敏度为4.65 μA∙nN−1,可与垂直可动栅极场效应晶体管(VMGFET)器件相媲美,器件的非线性度提高了0.78%,测量范围扩大为±5.10 μN。上述分析能够为LMGFET器件的电气和结构参数提供全面的设计优化指导,并证明了所提出的传感器在生物医学显微操作应用中具有出色的力传感潜力。

关键词: 微力传感器     横向运动栅极     场效应管     柔性光刻胶SU-8     生物医学显微操作    

Reduced texaphyrin: A ratiometric optical sensor for heavy metals in aqueous solution

Harrison D. Root, Gregory Thiabaud, Jonathan L. Sessler

《化学科学与工程前沿(英文)》 2020年 第14卷 第1期   页码 19-27 doi: 10.1007/s11705-019-1888-y

摘要: We report here a water-soluble metal cation sensor system based on the as-prepared or reduced form of an expanded porphyrin, texaphyrin. Upon metal complexation, a change in the redox state of the ligand occurs that is accompanied by a color change from red to green. Although long employed for synthesis in organic media, we have now found that this complexation-driven redox behavior may be used to achieve the naked eye detectable colorimetric sensing of several number of less-common metal ions in aqueous media. Exposure to In(III), Hg(II), Cd(II), Mn(II), Bi(III), Co(II), and Pb(II) cations leads to a colorimetric response within 10 min. This process is selective for Hg(II) under conditions of competitive analysis. Furthermore, among the subset of response-producing cations, In(III) proved unique in giving rise to a ratiometric change in the ligand-based fluorescence features, including an overall increase in intensity. The cation selectivity observed in aqueous media stands in contrast to what is seen in organic solvents, where a wide range of texaphyrin metal complexes may be prepared. The formation of metal cation complexes under the present aqueous conditions was confirmed by reversed phase high-performance liquid chromatography, ultra-violet-visible absorption and fluorescence spectroscopies, and high-resolution mass spectrometry.

关键词: texaphyrin     fluorescent sensor     ion-sensing     indium     mercury    

评论——Erasmus大学Thoraxcenter生物医疗工程系的最新成果

Bertrand van Ee

《工程(英文)》 2015年 第1卷 第1期   页码 20-20 doi: 10.15302/J-ENG-2015020

A cellphone-based colorimetric multi-channel sensor for water environmental monitoring

《环境科学与工程前沿(英文)》 2022年 第16卷 第12期 doi: 10.1007/s11783-022-1590-z

摘要:

● A cellphone-based colorimetric multi-channel sensor for in-field detection.

关键词: Colorimetric analysis     Multi-channel sensor     Cellphone     Water quality indexes     Environmental monitoring    

标题 作者 时间 类型 操作

Biomedical sensor technologies on the platform of mobile phones

Lin LIU, Jing LIU

期刊论文

A bionic approach for the mechanical and electrical decoupling of an MEMS capacitive sensor in ultralow

期刊论文

Personalized biomedical devices & systems for healthcare applications

I-Ming CHEN, Soo Jay PHEE, Zhiqiang LUO, Chee Kian LIM

期刊论文

Systems biomedical analysis of Schistosoma japonicum

Ze-Guang HAN MD,

期刊论文

Fluorescent probes and functional materials for biomedical applications

期刊论文

A mini review: Shape memory polymers for biomedical applications

Kaojin Wang, Satu Strandman, X. X. Zhu

期刊论文

Introduction to the Special Section on Biomedical Devices for Personal Health Applications

I-Ming CHEN

期刊论文

Functional ferritin nanoparticles for biomedical applications

Zhantong Wang, Haiyan Gao, Yang Zhang, Gang Liu, Gang Niu, Xiaoyuan Chen

期刊论文

Development and testing of a wireless smart toolholder with multi-sensor fusion

期刊论文

Flexible micro flow sensor for micro aerial vehicles

Rong ZHU, Ruiyi QUE, Peng LIU

期刊论文

Fault diagnosis of axial piston pumps with multi-sensor data and convolutional neural network

期刊论文

基于自解耦三明治结构的横向运动栅场效应晶体管微机电系统微力传感器

高文迪, 乔智霞, 韩香广, 王小章, Adnan Shakoor, 刘存朗, 卢德江, 杨萍, 赵立波, 王永录, 王久洪, 蒋庄德, 孙东

期刊论文

Reduced texaphyrin: A ratiometric optical sensor for heavy metals in aqueous solution

Harrison D. Root, Gregory Thiabaud, Jonathan L. Sessler

期刊论文

评论——Erasmus大学Thoraxcenter生物医疗工程系的最新成果

Bertrand van Ee

期刊论文

A cellphone-based colorimetric multi-channel sensor for water environmental monitoring

期刊论文